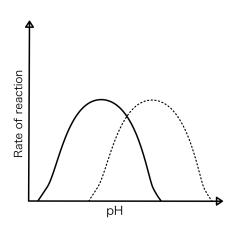


1 Consider the graph below:

Label the optimum temperature for the enzyme as 'A'

Label the point at which the enzyme has been completely denatured as B


[2 marks]

2 Explain why the rate of reaction initially increases with temperature

.....

[2 marks]

3 The graph below shows rate of reaction data for 2 different enzymes. One of these enzymes are found in the stomach, the other is found in the mouth.

a)	winch o	these inies	is more likely to	maicate the enz	zyme round in the	e stomach: Expia	in your answer.
٠.,							

[2 marks]

b) E	Both these enzymes have the same optimum pH, TRUE or FALSE?	
••••		 1 marks]
4	Explain, in terms of bonding, why the rate of reaction gradually falls once the pH increases above the optimum rather than denaturing straight away	
5	An enzyme controlled reaction was carries out at 36*C. After 3 minutes, 240 cm³ of product had be produced. Calculate the rate of reaction is cm³/s	een
	Rate of reaction =	cm ³ /s
		2 marks]
	[Total 1	2 marks]